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Abstract 

The extrapolation of a set of thermoanalytical (TA) curves to infinite temperature is proposed 
as a possible method to calculate the kinetic parameters of solid-state reactions from the TA 
curves without assuming a constant heating rate. It is shown theoretically that the method is 
applicable for the TA curves under any temperature program if the kinetic model function does 
not change among the temperature conditions applied. The practical applicability of the method 
is investigated through the kinetic analysis of TA curves for the thermal decomposition of 
synthetic malachite CuCO 3 . Cu(OH)2. The present method of kinetic analysis is widely useful for 
nonlinear nonisothermal TA curves in which the sample temperature does not change linearly. 

Keywords: Infinite temperature; Kinetics; Nonlinear nonisothermal TA; Solid-state reaction 

1. Introduction 

In conventional thermoanalytical (TA) methods, the heating rate of the sample or 
reference material is controlled to be constant by programming. Accordingly, kinetic 
analysis of conventional TA curves has been carried out by assuming a constant rate of 
variation of the sample temperature [1]. In practice, however, the assumption of 
a constant heating rate for the sample is not justified, owing to the effect of self-cooling 
or self-heating during reaction [2]. If the temperature in simultaneous T G - D T A  
measurements of the thermal decomposition of a solid is controlled by the measured 
temperature of the reference material, the linearly increasing temperature program is 
distorted by the effect of self-cooling during the reaction in accordance with the shape 
of the derivative DTA (DDTA) curve [3]. Although such deviation seems to be 
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improved somewhat by using heat compensation DSC or TA measurements in which 
the temperature is controlled by the measured sample temperature [4-1, the degree of 
improvement depends on the character of the reaction and the experimental condi- 
tions. In such TA measurements, the reaction under investigation takes place essential- 
ly under nonlinear nonisothermal conditions. For TA curves under the nonlinear 
nonisothermal conditions, temperature integration during the course of reaction, 
which is necessary for analyzing nonisothermal TA data kinetically [5], cannot be 
performed assuming a constant heating rate. This may be one of the most serious 
problems in kinetic approaches to thermal analysis. 

On the other hand, the thermophysical properties of solids under nonlinear 
nonisothermal heating or cooling conditions are of interest as a new aspect of the TA 
approach, as can be seen from the TA techniques developed recently, e.g., controlled 
transformation rate thermal analysis (CRTA) [6], modulated DSC (MDSC) or dy- 
namic DSC (DDSC) [7], high resolution TG (HRTG) [8] and so on. Methods of 
kinetic analysis for the TA curves under such nonlinear nonisothermal conditions are 
required for obtaining reliable kinetic parameters and for extending the usefulness of 
kinetic studies. 

In the present paper, the extrapolation of a set of TA curves to infinite temperature is 
introduced as a possible method of kinetic analysis for nonlinear nonisothermal TA 
curves. A practical example of kinetic analysis is described for the thermal decomposi- 
tion of synthetic malachite CuCO 3 • Cu(OH) 2. 

2. Theoretical 

2.1. Temperature dependence of the reaction rate 

For the kinetic analysis of TA curves of solid-state reactions, the following formula 
has widely been applied [1] 

E 
d--~-~ = Aexp ( - ~ )  f(ct) at (1) 

where ct, A, E, R and T are the fractional reaction, apparent pre-exponential factor, 
apparent activation energy, gas constant and temperature, respectively. The kinetic 
model functions f(e)  are usually derived on the basis of the physico-geometric features 
of the reaction proceeding in a particle of the sample matrix [9]. Table 1 lists various 
f(ct) usually employed for describing solid state reactions. Taking logarithms of Eq. (1), 
we obtain 

= - R ~  + In [Af(~)] (2) 

Thus the plot of ln(de/dt) against the reciprocal temperature T -  ~ at a given e under 
different heating rates q~ represents a straight line with a slope of - E / R  unless the 
kinetic obedience to f(~) changes among the heating rates applied. The method for 
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Table  1 
Theoret ical  kinetic model  funct ions  f (c0 usual ly  employed  for the kinetic analysis  of the sol id-state  react ions 

Model  Symbol  f (~)  

Nuc lea t ion  and  growth  
Phase  Bounda ry  control led 

React ion 
One-d imens iona l  diffusion D 1 
Two-d imens iona l  diffusion D 2 
Three -d imens iona l  diffusion D 3 

(Jander) 
Three -d imens iona l  diffusion D 4 

(Gins t l ing-Brounshte in)  

A,.(m = 1, 1.5, 2, 2.5, 3, 4) 
R.(n = 1, 2, 3) 

m ( 1 -  ~ ) [ _  l n ( 1 -  ~)]1 1/,. 
n(1 _ ~)1-1/.  

1/2~ 
- (l/ln(1 ~)) 
3(I -- ~)2/3/(2[ 1 - ( 1 - c01/3]) 

3 / ( 2 [ ( 1 - g )  I / 3  1]) 

calculation of the apparent activation energy E was originally proposed by Friedman 
[10] for chemical processes under linearly increasing temperatures. 

The extended interpretation of the Friedman method was discussed by Ozawa [11], 
and the applicability of Eq. (2) to the processes of crystal growth from pre-existing 
nuclei and diffusion was shown mathematically. One of the most important findings of 
the extended interpretation of the Friedman method is that Eq. (2) can be applied to 
any TA data obtained isothermally and under any temperature changes. Because Eq. 
(2) is not limited by an assumption of constant heating rate, the Friedman method is 
applicable to TA curves in which the programmed temperature conditions have been 
distorted by self-cooling and/or self-heating effects, and also to CRTA curves. Such 
applicability was confirmed practically for the thermal dehydration processes of 
LizSO4. H20 under a self-generated temperature condition [12]. 

The constancy of the apparent activation energy determined at different values of~ is 
the necessary condition for further kinetic characterization based on the general kinetic 
equation Eq. (1), which in turn will be one of the criteria for examining the applicability 
of Eq. (1) to the reaction process under investigation [13]. 

2.2. Generalized kinetic equation at infinite temperature 

Another finding of the Friedman method described above is the extrapolation of the 
rate data to infinite temperature. It is easily recognized that the intercepts of the 
Friedman plots represent the logarithmic reaction rate at infinite temperature. The 
kinetic rate equations at infinite temperature were successfully formalized by Ozawa 
more than 20 years ago by introducing the generalized time 0 [14-16] 

fo 0 = exp - dt (3) 

Here, 0 denotes the reaction time taken to attain a particular c~ at infinite temperature. 
First differentiation of Eq. (3) gives [15,16] 

d 0 = e x p  - (4) 
d~ ~ 
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Combining Eq. (4) with Eq. (1), we obtain [15,16] 

de 
dO = A f(c0 (5) 

Eq. (5) corresponds to the generalized kinetic equation at infinite temperature [ 17]. 
Using the pre-determined constant E value, the reaction rate at infinite temperature 
de/d0 at the corresponding e is calculated from a set of experimental TA curves by the 
equation [16] 

d O -  dt exp (6) 

Using Eq. (6), a plot of dc~/d0 against e is obtained as the kinetic rate data at infinite 
temperature. 

Integration of Eq. (5) after rearrangement gives [14,16] 

fade fo' g(e) = Jo f ( ~ ) -  A dO = AO (7) 

The integral kinetic equation at infinite temperature has the same form with that 
derived with the assumption of a constant heating rate [18]. 

2.3. Dependence of the rate data on the kinetic model function 

A simple relationship between de/d0 and f(c0 is deduced from Eq. (5), in which a plot 
of de/d0 against f (e)  represents a straight line with slope A when the correct f ( :0  has 
been employed. In such an approach, however, the value of A is distorted from the true 
value, as a simple mathematical consequence [19], if the actual kinetic process cannot 
be fully described by the conventional f(e). In this respect, it can be useful to find an 
empirical function h(e) containing the smallest possible number of kinetic exponents 
instead off(a), so that there is enough flexibility to describe the real process as closely as 
possible. One such empirical functions is known as the Sestak-Berggren model [20] 

h(e) = e ' (1 - e)"[ - In (1 - e)] p (8) 

It was believed that this kinetic equation, containing as many as three kinetic 
exponents, would be able to describe any TA curve. However, empirical kinetic models 
containing more than two kinetic exponents are too complicated to evaluate the kinetic 
exponents in practice [21,22]. The empirical kinetic model functions h(e) employed in 
the present work are listed in Table 2. If the most appropriate h(c0 has been determined, 
the apparent values of A at different e are calculated according to Eq. (5). Using the 
appropriate h(c 0, a constant value of A is obtained at different ~, which is used as one of 
the criteria for the appropriate kinetic treatment [23]. Knowing the most appropriate 
h(e) and constant A, integration of the general kinetic equation at infinite temperature 
is performed to obtain the integral kinetic rate data expressed by Eq. (7). 

However, the physico-geometric feature of the process as assumed in the formulation 
of f (e)  is difficult to predict from the h(~) determined, because of the essentially 
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Table 2 
Empirical kinetic model functions h(:t), together with their integral forms 9(~) 

149 

Type Symbol h(~) O (~¢) = ~ (dcc/h(~)) 

Johnson Mehl- Avrami- 
Erofeyev JMA(M) M(1 _~)[_ln(l _:t)]l l,'M 

Reaction order RO(N) (1 - ~)'~' 
Diffusion based DF(N) (N > 2) 1/[(1 ~)2..N_ 1] 
Sestak Berggren SB(M, N) ~M(I -- CO N 

[-In(1 ~)]I/M 
(1--(1 --ct) ~ N)/(1--N) 
(N/2) - ct -- (N/2)(I - ~)2/u 
no analytical form 

empirical character of h(~). It is interesting here to introduce the semi-empirical kinetic 
model functions h(~) [24]. Introducing the accommodation function a(~) [25], the 
semi-empirical model function h(e) is expressed as 

h ( ~ ) = f ( e ) a ( ~ )  (9) 

Then the kinetic expression h(e) can be regarded as a distorted case of the theoretical 
f(e), with a possible a(~) to decrease the difference of the idealized f(~) from the 
practical process. Application of the fractal dimension to the f(~) is one of the simplest 
examples of such semi-empirical h(e) [26]. Table 3 lists the semi-empirical h(~) 
functions, together with their mathematical properties. 

Multiplication of the function h(~) with the integral function 9(e) is a useful 
diagnostic tool to estimate the applicability of the semi-empirical h(e) as well as the 
shape of h(e) and the value of ~ at the maximum of h(~), i.e., eM, because the respective 
functions h(~),q(~) represent the maximum at the characteristic value of ~, i.e., % [27]. 
The values of a M and % are also listed in Table 3. From Eqs. (5) and (7), we obtain 

de 
h(oc)g(o¢) = ~-~ 0 (10) 

Using the empirical h(ct) determined above, the experimental value of ~p is obtained 
from Eq. (10). The semi-empirical h(~) suitable for describing the kinetic rate data can 
be distinguished by the correspondence of the shape of h(~) and the values of ~M and ~p 
[13,27,28]. The most appropriate kinetic exponent in the semi-empirical h(~) is 
determined through the plots according to Eq. (5) and/or Eq. (7) by continuously 
changing the kinetic exponent [29]. Although the semi-empirical h(~) could not show 
better correspondence to the experimental data than the empirical h(ct), it is hoped that 
the physico-geometric feature expected from the semi-empirical h(~) will give useful 
information for further investigations complemented by other physico-chemical 
measurements, e.g., microscopy techniques [17, 18, 30-32]. 

3. Experimental 

Synthetic malachite was prepared by the titration of 1 M CuSO¢ solution with 
1 M K2CO 3 solution [33]. With mechanical stirring, the precipitate produced during 
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the titration was aged in the mother liquor at 50°C for 2 h. The precipitate was filtered 
off, washed with water and ethanol, and dried in air at 100°C. The product was 
identified by chemical analysis for Cu 2 +, FT-IR spectroscopy, X-ray powder diffrac- 
tometry and TG. 

A 10.0 mg amount of the sample was weighed into a platinum crucible 2.5 mm in 
diameter and 5 mm in height. Simultaneous T G - D T A  curves at various programmed 
heating rates were recorded using an ULVAC TGD-9400 instrument with an IR image 
furnace, in which the temperature was controlled by the measured sample temperature. 
The atmospheric pressure during the measurement was controlled to be 1.5 × 10 2 Pa 
using a vacuum controller. The TA data were calibrated by the data from blank 
measurements. Fig. 1 shows a typical experimental heating rate around the decomposi- 
tion temperature in the present T G - D T A  measurements. A positive d¢viation of the 
practical heating rate from the programmed value is seen at the initial stage of the 
reaction, which may be caused by overshooting from the furnace to recover the 
endothermic reaction. Accordingly, for the present TA curves it is difficult to assume 
a constant heating rate during the reaction. 

4. R e s u l t s  and d i s c u s s i o n  

Fig. 2 shows typical T G - D T G  curves for the thermal decomposition of synthetic 
malachite at different applied heating rates. In these TA measurements, the practical 

5.6 
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5 . 2 -  

i 

5 0  - A j  

4.8 
540 

./"k 
? 

I I I 
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T e m p e r a t u r e  / K 

Fig. 1. A typical plot of the practical heating rate dT/dt against temperature T in the present T G - D T A  
measurements  at a programmed heating rate of 5 K min 1. 
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Fig. 2. Typical T G - D T G  curves for the thermal decomposition of synthetic malachite under a reduced 
pressure of 1.5 x 10 z Pa at various programmed heating rates. 

heating rate during the reaction was distorted irrespective of the heating rate applied, 
typically as shown in Fig. 1. The Friedman plots at various e are shown in Fig. 3. The 
respective plots represent good linearity, with the correlation coefficient of the linear 
regression analysis 7 better than -0.9900. Fig. 4 shows the ~ dependence of the 
apparent value of E. A nearly constant E value was obtained in the range 0.2 < e < 0.95 
with a mean value of 131.3 _+0.4 kJ mol 1. The constancy of the E value at different e is 
a prerequisite of the application of the general kinetic equation, i.e., Eq. (1). The results 
in Fig. 4 indicate that the present reaction can be treated on the basis of Eq. (1) within 
the restricted range of 0.2 < e < 0.95. 

The kinetic rate data extrapolated to infinite temperature were obtained by applying 
the mean value of E to Eq. (6) within the restricted range 0.2 _< ~ < 0.95. Fig. 5 represents 
such kinetic rate data at infinite temperature as a plot of de/d0 against ~. According to 
Eq. (5), the obedience of the rate data to the theoretical kinetic model function was 
compared through the plots of various f(e),  listed in Table 1, against de/d0. Any plot of 
f (e )  against de/d0 did not show a linear relationship, as is seen from Fig. 6. 

To avoid deviation of the apparent A value due to the inappropriate kinetic model 
function, the empirical kinetic model functions h(e) listed in Table 2 were employed. 
Because the reaction rate at infinite temperature de/d0 reaches its maximum at 
e M =0.37, see Fig. 5, the rate data are probably described by the SB(M,N) or JMA(M) 
model [13, 22, 27, 28]. The kinetic exponents M and N in the SB(M,N) function are 
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Fig. 3. Typical plots ofln(d~/dt) against T 1 at various values of ~ from 0.1 to 0.9 in steps of 0.1. 
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Fig. 4. The values of E at various ~ calculated by the Friedman method. 
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Fig. 5. The plot of de/d0 againt c~ in the restricted range 0.2 _< c~ _< 0.95. 

estimated using the following relationship 

in ~ = l n A  + N l n [ ~ P ( l - e ) ]  

with 

(11) 

m c( M p -  
N - 1 - - ~  m 

Fig. 7 shows the plot of In(de/d0) against l n [ e P ( l - e ) ]  with P=0.587. The plot 
represents fairly good linearity with 7' = 0.9996, from which the exponents N = 1.01 and 
M = N P  = 0.60 are determined. For the JMA(M) model, the exponent M was deter- 
mined using the equation [13, 22, 27, 28]. 

1 
m - (12) 

1 + ln(1  --aM) 

The value of M in the JMA(M) function calculated from Eq. (12) was 1.86. Fig. 8 shows 
the plots of two possible h(e), SB(0.60,1.01) and JMA(I.86), against de/d0 according to 
Eq. (5). It is seen from Fig. 8 that the SB(0.60,1.01) function describes well the shape of 
the kinetic rate data with 7 = 0.9994. The apparent values of A at different e calculated 
using Eq. (5) are shown in Fig. 9. The nearly constant value of lnA = 21.21 4- 0.02s 1 
was obtained for the SB(0.60,1.01) model. The values obtained for the JMA(1.86) model 



N. Koga/Thermochimica Acta 258 (1995) 145-159 155 

18.55 :. 

17.71 : 

4-.14. 

7.89 
. . . J  DI" 

I I I .75 3.2 5.65 

2.17 , ~ 3  

• ,•°• .° .°•°°°°° " " " ' " ~ "  

1.34. , ~  

° .. • ° ° .°,.°° ° "°" " • " ~ "  

I t I .75 3.2 5.65 .75 

1.06 . , . I ' " )  
........"'" /A4- 

•°°° 

.° 
°• 

. 8 6  .... . . . . .~A3~ 

.°.•• 
. 

• 68 ../"~'A2__ 
. . . . " * "  

. ° ° ,  . • '° '°"  

.75 ) 1  

• ° . . . .° .~°.~- '"" '"~ 

I I I 3.2 5.65 

(dcddO)xlO-8  / s-1 

Fig. 6. Plots of variousf(c0 against d~/d0 in the restricted range 0.2 < ~ < 0.95. 

decrease gradually with c~. The constancy of the apparent values of A irrespective of~ is 
also a prerequisite of Eq. (1), in addition to a constant value of E. This is in turn one of 
the criteria to evaluate whether or not the appropriate kinetic treatments were 
performed [23]. Accordingly, the SB(0.60,1.01) model can be selected as the most 
appropriate empirical kinetic model function. Fig. 10 shows the correspondence of the 
experimental values of de~AdO to the mathematically drawn SB(0.60,1.01) function. 
Within the restricted range of 0.2 < c~ < 0.95, the rate data correspond perfectly to the 
SB(0.60,1.01) function with the standard deviation of the nonlinear regression analysis 
o- = 0.0003. 

A plot of h(ct)g(~) against ~ was drawn by numerically integrating the SB(0.60,1.01) 
function with respect to 0 _< ~ _< 1, as shown in Fig. 10. The function h(~)g(a) reaches 
a maximum at ap = 0.60, which corresponds very closely with the specific value of 
ap = 0.632 for the semi-empirical A M model listed in Table 3. The most appropriate 
kinetic exponent M = 1.80 in the A M model was determined from the linearity of the 
dot/d0 vs. A M plots by changing the value of M from 1.00 to 4.00 in steps of 0.01. Fig. 11 
shows the plot of da/d0 against A 1.so. The apparent values of A at different ~t obtained 
by assuming the semi-empirical A 1.so model are also shown in Fig. 9. The constancy of 
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Fig. 7. The plot of In (de/d0) against ln[~e(1 - c0] with P = 0.587 in the restricted range 0.2 _< ~ _< 0.95. 
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Fig. 8. Plots of the two possible h(.:0; SB(0.60,1.01) and JMA(1.86) against d:~/d0 in the restricted range 
0.2 ~< :~ < 0.95. 
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Fig. 9. The values of lnA at various ct calculated by Eq. (5) assuming the empirical SB(0.60,1.01) and 
JMA(I.86) functions and the semi-empirical A1.8o function in the restricted range 0.2 _< ct_<0.95. 
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Fig. 10. Plots of h(~) and h(~),q(a) against ~ according to the empirical SB(0.60,1.01) function, together with 
the plot of experimental d~/AdO (O) against ~ in the restricted range 0.2 < ~ < 0.95. 
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Fig. 11. The plot of d~/d0 against the semi-empirical Aa.so function in the restricted range 0.2 <~ <0.95. 

lnA is slightly improved from the JMA(1.86) model. The difference of the absolute 
values of lnA for the A1.8o and SB(0.60,1.01) models arises from the meaning of the 
apparent rate constant assumed in formulating these model functions. The semi- 
empirical A l.sO model can be interpreted on the basis of the theoretical A,, model as is 
regulated by the nucleation of the product crystallites and their growth with the fractal 
dimension [24]. 

5. Conclusions 

Without assuming a constant heating rate during the reaction, the temperature 
integration of the general kinetic equation becomes difficult, so that the kinetic 
equation in an integral form cannot be applied to the thermoanalytical data. An 
isoconversion method based on Eq. (1), known as the Friedman method, is useful for 
obtaining the apparent values of E at different ~ for nonlinear nonisothermal TA curves 
because a constant heating rate is not assumed in the method. Using a constant value of 
E during the reaction, the set of TA data is extrapolated to infinite temperature 
according to Eq. (6). The rate data at infinite temperature can be described by the 
general kinetic equation with the generalized time 0, Eq. (5). If the correct kinetic model 
function is applied, the general kinetic equation at infinite temperature can be 
integrated with respect to 0 without the assumption of a constant heating rate. The 
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empi r i ca l  k ine t ic  m o d e l  func t ions  h(a), such as the S e s t a k - B e r g g r e n  model ,  p lay  a n  
i m p o r t a n t  role in this i n t eg ra t ion ,  because  of their  f lexibil i ty in  desc r ib ing  the k ine t ic  
ra te  data .  U s i n g  b o t h  differential  a n d  in tegra l  k ine t ic  e q u a t i o n s  at inf ini te  t empe ra tu r e ,  

the k ine t ic  obed ience  to a n  a p p r o p r i a t e  k ine t ic  m o d e l  f unc t i on  has  been  eva lua t ed  
t ho rough ly .  E m p l o y i n g  the  semi -empi r i ca l  k ine t ic  m ode l  func t ions  h(~), expressed by  
mul t ip ly ing  the theoret ical  kinet ic  mode l  func t ion  f (~)  with an  a c c o m m o d a t i o n  func t ion  
a(~), it is poss ib le  to in te rp re t  the  phys i co -geomet r i ca l  feature of the reac t ion .  T h r o u g h  
the k ine t ic  analysis ,  the c o n s t a n c y  of the va lues  of E a n d  A, a prerequis i te  of the genera l  
k ine t ic  equa t i o n ,  in  t u r n  p rov ides  the c r i t e r ion  for the a p p r o p r i a t e  k ine t ic  analysis .  
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